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WHITE AREAS ON THE MAP OF APPLYING
NON-EQUILIBRIUM THERMODYNAMICS:

ON THE SELF ACCELERATING ELECTRON

József Verhás

Abstract. Classical electrodynamics displays a formula for the equation of

the motion of charged particles that has run away solutions. Gyarmati’s wave
approach leads to a solution fitting to the classical term in the low frequency

regime. A shortage of the solution is that the characteristic time in the equa-

tion depends on the mass of the charged particle. An abstract model with two
dynamic degrees of freedom results in a solution free of the above problem. For

complete compatibility with electrodynamics, the need for a generalization of
Maxwell’s equations is probable.

1. Introduction

Non-equilibrium thermodynamics has been applied with success to a lot of phe-
nomena even in the form that is referred to nowadays as “classical irreversible
thermodynamics”—in the form that was accepted just after the first papers of On-
sager [1–4] and is presented in the classical monographs [5–8]. It concerned the
principle of local equilibrium. The latter turned out to be too tight and was gener-
alized [9–14]. The departure from local equilibrium was fruitful and opened a broad
perspective of applications [15–25]. Nevertheless, the variety of the explored fields
non-equilibrium thermodynamics applies to is large there are lots of white area on
the map. One of them concerns electromagnetic radiation.

Classical electrodynamics results a formula for the dipole radiation leading to
violation of the second law of thermodynamics. The emitted energy is given by

P =
µ0

6πc
〈p̈2〉, (1)

where P is the radiated power, µ0 the magnetic permeability of the vacuum, c
the velocity of light, p̈ the second time derivative of the dipole moment, and 〈. . .〉
denotes time average. The SI units are used; Maxwell’s equations read

rot E + Ḃ = 0, div B = 0,

rot H = j + Ḋ, div D = ρe, (2)
D = ε0E, B =µ0H.
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The usual equation of motion derived from eq. (1) for a classical point charge

mv̇ = F +
µ0e

2

6πc
v̈ (3)

leads to run away solution; rest or rectilineal uniform motion is not stable. The
calculations leading from Maxwell’s equations to equation of motion (3) via eq. (1)
is complicated and make use of several hypothesis and, usually, approximations.
The solution of the discrepancy was sought with several argumentation; the shape
of the charge, relativistic effects, and quantum effects were considered. Relativistic
effects can not eliminate the problem as the instability of rest appears even if
the motion is slow, on the other hand, formula (1) is valid for macroscopic bodies;
quantum considerations are not probable to help, at least, classical and macroscopic
considerations have to display any solution for the contradiction. The shape of the
charge has no effect on the dipole approximation and any charge distribution from
far enough can be approximated well by dipole for any required accuracy. For the
latter reason the shape of the charge can modify the equation of motion but with a
powerless force. The acceptable solutions argued with irreversibility. The present
author [26] regarded the moving charge and the electromagnetic field radiated by
it as a thermodynamic system and applied Gyarmati’s wave approach [9]. The
equation of motion

τ Ḟ + F = mv̇ (4)
was obtained. As the considerations started from the first and the second law of
thermodynamics run away solutions were excluded a priori. For agreement with
the classical radiation formula in the low frequency regime,

τ =
µ0e

2

6πcm
(5)

must hold. The same equation was obtained by G. W. Ford and R. F. O’Connell
[27–31] assuming also irreversibility; they assumed interaction with a “blackbody
radiation field”. The formula (4) is not satisfactory. The main deficiency is that
τ depends on the mass of the particle, whereas it ought to depend only on the
charge. Interaction with a “blackbody radiation field” is not probable as τ must not
depend on temperature unless formula (5) is dropped. Onsager’s thermodynamics
supplemented with dynamic variables gives better models.

2. Thermodynamic models of moving charges.

To do with the problem chalked out above assume a macroscopic body with
charge. The thermodynamic system is the body and a proper part of the electro-
magnetic field around. The essential properties of the system are its energy, and
some others that are determined by the energy if at rest but if moving. Suppose
that all properties can be given by state variables, one of which is the energy U .
The first law now reads

U̇ = Iq + Fv. (6)
The entropy depends on U and some independent vector variables ξi. The ξ vari-
ables can be chosen several way, but a special choice is comfortable. It is based
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on the Morse–lemma [32], the second law, and that the entropy in equilibrium is a
monotonous increasing function of energy. The entropy function is given as

S = S

(
U − 1

2

n∑
i=1

ξ2

)
. (7)

The balance of entropy is

Ṡ =
1
T
Iq + Ps, Ps > 0. (8)

If we do not want to waste time for studying the intricate details of heat exchange
we had better adopt

1
T

=
∂S

∂U
. (9)

Combining the above relations, we get the correlation

TPs = Fv −
n∑

i=1

ξξ̇ (10)

for the energy dissipated in unite time; from it, Onsager’s equations are obtained.
They read

F= R00v +
n∑

k=1

R0kξ̇k

−ξi = Ri0v +
n∑

k=1

Rikξ̇i {i = 1, 2, . . . , n}. (11)

The coefficients satisfy the Onsager–Casimir reciprocal relations. If we suppose that
all ξi is reversed with time inversion, i.e., they are of β-type the Onsager–Casimir
reciprocal relations read

R0i = −Ri0, Rik = Rki. (12)

As a consequence of the second law the coefficients in the main diagonal are positive;

R00 > 0, Rii > 0. (13)

The Morse–lemma does not determines the choice of the dynamic state variables
even in the linear approximation; an orthogonal transformation leaves the form
of the entropy function (7) invariant. This fact makes possible to transform the
matrix of the Rik coefficients into main diagonal and Onsager’s equations turn into

F= R00v +
n∑

k=1

R0kξ̇k

−ξi = Ri0v +Riξ̇i {i = 1, 2, . . . , n}. (14)

To make the content of the equations transparent introduce the new variables

βi = R0iξi {i = 1, 2, . . . , n} (15)
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and substitute into eqs. (14). We get

F = R00v +
n∑

i=1

β̇i (16)

Riβ̇i + βi = R2
i0v. (17)

The first term on the right hand side of the eq. (16) is obviously drag, which
tends to zero if inertial motion is possible. The quantities βi are parts of the linear
momentum, each of which follows the velocity with relaxation as eqs. (17) show.
The quantities Ri are relaxation times and R2

i0 parts of the mass. Introducing new
notations

I =
n∑

i=1

βi, τi = Ri, mi = R2
i0, (18)

and dropping the drag eqs. (16) and (17) turn to

F = İ (19)

τiβ̇i + βi = miv. (20)

The quantity I is, obviously, the linear momentum and eq. (19) is Newton’s second
law. The parts of the linear momentum—βi—follow the velocity changes with some
delay.

Each βi is modeled by a mass with a viscously stretching handle. The whole is
a bunch of masses with common handle but with individual stretching bounds as
shown with three elements in figure 1.

�m3

m2

m1

F

η3

η2

η1

Figure 1.
To get a simpler model, we suppose that the relaxation times τi are short and
negligible except the first. It means that the coefficients Ri in eqs. (20) are equal
to zero except the first. If so, the βi {i = 2, 3, . . . n} are proportional; the model
contains two independent dynamic variables ξ0 and ξ1, or equivalently β0 and β1

for which the equations are

I = m0v + β1, τ1β̇1 + β1 = m1v, (21)

where

m0 =
n∑

i=2

mi.
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Eliminating β1 from the equations results

τ1İ + I = m(τ2v̇ + v), (22)

where the notations

m = m0 +m1, τ2 = τ1
m0

m0 +m1

have been introduced. The model in figure 1 reduces to the simpler one shown in
figure 2.

�m1

m0

F
η1

Figure 2.
Figure 3 shows the same model but it may be easier to understand.�m1 m0

F
η1

Figure 3.
The amount of the dissipated energy is calculated from eq. (10);

TPs =
(τ1İ− τ2mv̇)2

τ1 − τ2
, (23)

which turns into

〈TPs〉 =
(τ1 − τ2)m
1 + τ2

1ω
2
〈v̇2〉 (24)

for harmonic oscillation. The denominator is approximately one for low frequency;
the result compares to the classical formula (1) if and only if

(τ1 − τ2)m = τ1m1 =
µ0e

2

6πc
. (25)

This formula is nearly the same as eq. (5) derived from eq. (4) but not the whole
mass of the particle has to be put into the denominator; m1 is only some part of
it. Thus τ1 may be independent of the mass of the particle. One can say that m1

is the “electromagnetic mass”, nevertheless, it may be only a part of it.
Now turn attention to the dissipated and the radiated energy. Introducing (25)

into eq. (24) and the dipole moment of an oscillating charge into eq. (1), we get

〈TPs〉 =
µ0e

2

6πc(1 + τ2
1ω

2)
〈v̇2〉, P =

µ0e
2

6πc
〈v̇2〉 . (26)

The comparison results a very bad discrepancy. The radiated power is bigger than
the dissipated one, which is nonsense. This shortcoming has to be eliminated.

In the formulae (26) the symbol v stands for the velocity of the handle of the
particle in the formula of energy dissipation—m0 in figure 3—and for the velocity of
the charge in the formula for the radiated energy. If the charge is assumed to move
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together with the field—m1 in figure 3—the agreement is perfect. This assumption
is rather trivial, if charges are regarded as the singularities of the electromagnetic
field. On the other hand, the charged particle can be driven by electromagnetic
forces and one can hardly find an explanation why the force acts on the handle.

The thermodynamic model has eliminated the runaway solution, nevertheless a
new contradiction emerged; the discrepancy has changed dress. To touch Maxwell’s
equations seems unavoidable, but the requirements are hard. First of all, electro-
dynamics is the most successful framework of theoretical physics and the results
are verified immeasurably many times in practice, moreover, 20th century’s physics
is rather based on it. On the other hand, an irreversible electrodynamics is really
attractive and challenging. E.g., a semitransparent vacuum could explain—within
the equations—why the retarded potential is exclusively used for the radiation of
an aerial in infinite space, moreover, it would give an alternative and natural ex-
planation why the sky in the night is dark.

For such a generalization, more complicated thermodynamic models have to be
assumed. The β-type variables alone may be insufficient and Onsager’s equations
for a system with both α- and β-type dynamic variables, are less transparent and
studying them needs help from other branches of science.
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